Dynamics of ligand-induced, Rac1-dependent anchoring of cadherins to the actin cytoskeleton
نویسندگان
چکیده
Cadherin receptors are key morphoregulatory molecules during development. To dissect their mode of action, we developed an approach based on the use of myogenic C2 cells and beads coated with an Ncad-Fc ligand, allowing us to mimic cadherin-mediated adhesion. We used optical tweezers and video microscopy to investigate the dynamics of N-cadherin anchoring within the very first seconds of bead-cell contact. The analysis of the bead movement by single-particle tracking indicated that N-cadherin molecules were freely diffusive in the first few seconds after bead binding. The beads rapidly became diffusion-restricted and underwent an oriented rearward movement as a result of N-cadherin anchoring to the actin cytoskeleton. The kinetics of anchoring were dependent on ligand density, suggesting that it was an inducible process triggered by active cadherin recruitment. This anchoring was inhibited by the dominant negative form of Rac1, but not that of Cdc42. The Rac1 mutant had no effect on cell contact formation or cadherin-catenin complex recruitment, but did inhibit actin recruitment. Our results suggest that cadherin anchoring to the actin cytoskeleton is an adhesion-triggered, Rac1-regulated process enabling the transduction of mechanical forces across the cell membrane; they uncover novel aspects of the action of cadherins in cell sorting, cell migration, and growth cone navigation.
منابع مشابه
Regulation of cell-cell adhesion by the cadherin-catenin complex.
Ca(2+)-dependent cell-cell adhesion is regulated by the cadherin family of cell adhesion proteins. Cadherins form trans-interactions on opposing cell surfaces which result in weak cell-cell adhesion. Stronger cell-cell adhesion occurs by clustering of cadherins and through changes in the organization of the actin cytoskeleton. Although cadherins were thought to bind directly to the actin cytosk...
متن کاملMicrotubule Dynamics Control HGF-Induced Lung Endothelial Barrier Enhancement
Microtubules (MT) play a vital role in many cellular functions, but their role in peripheral actin cytoskeletal dynamics which is essential for control of endothelial barrier and monolayer integrity is less understood. We have previously described the enhancement of lung endothelial cell (EC) barrier by hepatocyte growth factor (HGF) which was associated with Rac1-mediated remodeling of actin c...
متن کاملRac is a dominant regulator of cadherin-directed actin assembly that is activated by adhesive ligation independently of Tiam1.
Classic cadherins function as adhesion-activated cell signaling receptors. On adhesive ligation, cadherins induce signaling cascades leading to actin cytoskeletal reorganization that is imperative for cadherin function. In particular, cadherin ligation activates actin assembly by the actin-related protein (Arp)2/3 complex, a process that critically affects the ability of cells to form and exten...
متن کاملPI3K p110α Isoform-Dependent Rho GTPase Rac1 Activation Mediates H2S-Promoted Endothelial Cell Migration via Actin Cytoskeleton Reorganization
Hydrogen sulfide (H(2)S) is now considered as the third gaseotransmitter, however, the signaling pathways that modulate the biomedical effect of H(2)S on endothelial cells are poorly defined. In the present study, we found in human endothelial cells that H(2)S increased cell migration rates and induced a marked reorganization of the actin cytoskeleton, which was prevented by depletion of Rac1. ...
متن کاملα-catenin, vinculin, and F-actin in strengthening E-cadherin cell–cell adhesions and mechanosensing
Classical cadherins play a crucial role in establishing intercellular adhesion, regulating cortical tension, and maintaining mechanical coupling between cells. The mechanosensitive regulation of intercellular adhesion strengthening depends on the recruitment of adhesion complexes at adhesion sites and their anchoring to the actin cytoskeleton. Thus, the molecular mechanisms coupling cadherin-as...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of Cell Biology
دوره 157 شماره
صفحات -
تاریخ انتشار 2002